

Aalborg Universitet

Concentrated Load on Reinforced Concrete Beam
Rathkjen, Arne
Publication date: 1992
Document Version Early version, also known as pre-print
Link to publication from Aalborg University

Citation for published version (APA):

Rathkjen, A. (1992). Concentrated Load on Reinforced Concrete Beam. Dept. of Building Technology and Structural Engineering, Aalborg University.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

CONCENTRATED LOAD ON REINFORCED CONCRETE BEAM A. Rathkjen

Department of Building Technology and Structural Engineering Aalborg University

According to Danish Standard DS 411 the load carrying capacity of a reinforced concrete beam is determined using the extremum principles of the theory of plasticity. The model used is shown in figure 1.

Figure 1

It is a kind of truss model that consists of two horizontal stringers and a zone between the two stringers in which the concrete is in uniaxial compression and the stirrups are in uniaxial tension.

In the concrete the stress components are

$$\begin{split} \sigma_{xx}^c &= -\sigma^c \cos^2 \vartheta \\ \sigma_{yy}^c &= -\sigma^c \sin^2 \vartheta \\ \sigma_{xy}^c &= -\sigma^c \sin \vartheta \cos \vartheta \end{split}$$

where σ^c is the uniaxial compressive stress, and ϑ is the angle between a horizontal x-axis and the direction of compression. In the vertical stirrups the stress is σ^s and the components are

$$\sigma_{xx}^{s} = 0$$

$$\sigma_{yy}^{s} = \sigma^{s}$$

$$\sigma_{xy}^{s} = 0$$

The total stress thus becomes

$$\sigma_{xx} = -\sigma^c \cos^2 \vartheta$$

$$\sigma_{yy} = -\sigma^c \sin^2 \vartheta + \varphi \sigma^s$$

$$\sigma_{xy} = -\sigma^c \sin \vartheta \cos \vartheta$$

where φ is the reinforcement ratio for the stirrups.

Using these assumptions one finds that the stresses σ^c and σ^s are determined from

$$\sigma^c bh \sin \vartheta \cos \nu = Q$$
$$\varphi \sigma^s bh \cot \vartheta = Q$$

where b is the width of the beam, h is the distance between the two horizontal stringers and Q is the shear force.

With these stresses, the stringerforces T and C in the horizontal stringers are found

$$T = M/h + \frac{1}{2}Q \cot \nu$$
$$C = M/h - \frac{1}{2}Q \cot \nu$$

where M is the moment. The variation of T and C is shown in figure 2. For more details see [1].

Figure 2

In a beam loaded with concentrated loads, the shear force is constant between any two loads and also the stresses σ^c and σ^s are constant. One question in this connection is: How do the stresses σ^c and σ^s change from values corresponding to one value of the shear force $Q = Q_1$ to another $Q = Q_2 = Q_1 - P$.

An answer to that question is found in assuming the existence of an inclined stringer under the concentrated load as shown in figure 3. The force in this stringer varies

Figure 3

linearly from $P/\sin\psi$ to 0, where the inclination ψ is determined from

$$\cot \psi = rac{1}{2} \cot artheta$$

The complete stringer system for a simply supported beam is shown in figure 4.

Figure 4

[1] Nielsen, M.P.: Limit Analysis and Concrete Plasticity, Englewood Cliffs, Prentice-Hall, Inc. 1984.